(1) Give two reasons why the set of odd integers under addition is not a group.
(2) Show that $\{1,2,3\}$ under multiplication modulo 4 is not a group but that $\{1,2,3,4\}$ under multiplication modulo 5 is a group.
(3) Prove that in a group, $\left(a^{-1}\right)^{-1}=a$ for all a.
(4) Prove that a group G is Abelian if and only if $(a b)^{-1}=a^{-1} b^{-1}$ for all a and b in G.
(5) Let p be a prime number and G be a group such that $|G|=p$. The group G is cyclic.
(6) Is D_{3} (the set of symmetries of an equilateral triangle) Abelian?
(7) Prove that a group G is Abelian if and only if $(a b)^{2}=a^{2} b^{2}$ for all a and b in G.
(8) Prove that an Abelian group with two elements of order 2 must have a subgroup of order 4.
(9) Let $\Phi: G \rightarrow H$ be a homomorphism. Show that $\Phi\left(e_{G}\right)=e_{H}$ and $\Phi\left(a^{-1}\right)=(\Phi(a))^{-1}$.
(10) Show that A_{3} is a normal subgroup of S_{3}.
(11) Prove or disprove that (a) Every normal subgroup of a group G is cyclic.
(b) Every cyclic subgroup is normal.
(12) Show that the set $Z[x]$ of all polynomials in the variable x with integer coefficients under ordinary addition and multiplication is a commutative ring with unity $f(x)=1$.
(13) Show that $2 \mathbb{Z} \cup 3 \mathbb{Z}$ is not a subring of \mathbb{Z}.
(14) The ring $\{0,2,4,6,8\}$ under addition and multiplication modulo 10 has a unity (multiplicative identity). Find it.
(15) Let R be a ring with unity 1 . Show that $S=\{n .1: n \in \mathbb{Z}\}$ is a sub- ring of R.
(16) Suppose that a belongs to a ring and $a^{4}=a^{2}$. Prove that $a^{2 n}=a^{2}$ for all $n \geq 1$.
(17) Let F be a finite field with n elements. Prove that $x^{n-1}=1$ for all nonzero x in $F, 1$ denotes the multiplicative identity of F.

